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Resonance Scattering of Lyman--Alpha Radiation by
Hydrogen in the Ground State

1. INTRODUCTION

The calculation of the resonance-scattering cross section for Lyman-alpha

radiation is important for a variety of reasons. First of all, such scattering is

extremely important in astrophysics, since hydrogen is the most abundant element
in "empty" space. Hydrogen is also important in the higher portions of the earth's

atmosphere, where it acts as a sf.atterer of solar radiation.
Another reason for calculating this cross section is that this is the simplest

resonance cross section which one can calculate, since the wave functions are
simple and since a two-level approxiiation, involving the ground state and the
degenerate first excited state, is apt to be especially good. One may expect some
insight into the methods of calculating resonance cross sections for more compli-

cated atoms.
A more fundamental reason is that the resonance line shape, which is identical

to the line shape of Lymsn-alpha radiation emitted by excited hydrogen, lend
directly to the self-energy problem of quantum electrodynamics. As is well-
known, the position of resonance (or maximum intensity in the case of emission)

is not precisely at the Lyman-alpha frequency, but is shift-d. In the traditional
calculations of this shift, the dipole approximation to the electromagnetic matrix

(Received for publication 5 December 1973)
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elements is used, and the shift is infinite. Since the advent of renormalization

theory one uses renormalization to obtain finite results.1 Where resonance scat-

tering is treated directly, 2 it is found that the shift is of the order of the Lamb

shift of the energy levels. However, to obtain a finite result, renormalization

theory is used which includes a higher order correction.

In the present paper, we use Dirac's theory of resonance scattering. 3 In this

theory only the matrix elements which have a resonant denominator in the usual

perturbation theory expansions are assumed to be non-zero. One is then led to a

Hamiltonian whose eigenfunctions can be obtained exactly. The Dirac resonance

theory is studied from a rigorous mathematical point of view by K.O. Friedrichs,

and we are greatly influenced by his paper. 4

However, we must modify the Dirac resonance theory somewhat to take into

account the degeneracy of the first excited state of hydrogen. In our treatment we

shall consider only the matrix elements of the electromagnetic interaction

HI = i(et/Mc) A. V, (1)

ir where M is the electron mass, which connects the following states with each other

by the emission of a photon from the vacuum: IS, 2S, 2 3 P. In contrast to the

traditional treatments, we shall not use the dipole approximation but instead we

shall use exact matrix elements. 5 It will be seen that in contrast to earlier treat-

ments, the shift in position of resonance will be finite without renormalization.

f Furthermore, this shift, when translated into shift * in energy level, is close to

the Lamb shift for the ground state. We include all matrix elements of the two-

level system, those which lead to "forbidden" (in the dipole approximation) as well

as those which lead to "permitted" transitions. When we first carried out the cal-

culations for the frequency shift using the techniques of the present paper, 6 we

ignored the "forbidden" transitions. This calculation led to a frequency shift

1. Stenholm, S. (1973) Quantum theor) of electromagnetic fields interacting with
atoms and molecules, Physics Reports 6C(No. 1). North-Holland Publishing
Co., Amsterdam.

2. Low, F. (1952) Natural line shape, Phys. Rev. 88:53.

3. Dirac, P.A. M. (1947) The Principles of Quantum Mechanics, 3rd Edition,
Clarendon Press, Oxford, p. 201.

4. Friedrichs, K. Q. (1948) On the perturbation of continuous spectra, Commun.
Appl. Math. 1:361.

5. Moses, H.E. (0973) Photon wave functions and the exact electromagnetic
matrix elements for hydrogenic atoms, Phys. Rev. A, 8:17 10.

6. Moses, H. E. (19G6) Resonance scattering of Lyman-a radiation by hydrogen
in the ground state, Tech. Note 1966-14, Lincoln Lab., MIT.
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somewhat greater than one-half of the Lamb shift. [The line shape of emitted

Lyman-alpha radiation was also calculated in 7, also taking into account only the

permitted transition between the 1S state and the 23 P states, using the exact

matrix elements (calculated differently but agreeing with other matrix elements 5 ,6

but with an unconventional treatment of the electromagnetic interaction. Exactly

the same shift as found previously was obtained. 6 ] The inclusion of matrix ele-

ments corresponding to "forbidder." transitions between the 2S and 23 P states

and between the 23 P states themselves gives a substantial contribution to the

shift. On the other hand, only the permitted transition from the 1S to the 23 P

state contributes to the natural line breadth. It would be interesting to see what

contributions the n=3 states and two-photon intermediate states give. There

should be no difficulty in calculating these contributions other than "book-keeping."

If the contributions are small, it would appear that the two-level, single-photon

theory is indeed a good approximation.

In short, the calculations of the present paper are of the kind that could have

been done in the early 1930's had the exact matrix elements been known. The

shift which we obtain corresponds to the raising of the ground state by an amount

of 6297 MH in frequency terms. The Lamb shift calculate,] using renormalization

theory is 8126 MH. 8 Thus our calculation, which is completely free of infinities,

gives in excess of 75 percent of the Lamb shift. Since retardation gives such a

large proportion of the Lamb shift which is usually attributed to renormalization,

it would appear that renormalization theory sheuld be re-examined for bound states

at least. 9 It ought to be mentioned that the inclusion of the effects of retardation is

being treated in recent times by a number of writers from a Green's functions

point of view (see, for example, 10). However, the objectives and methods are

very different from those of the present paper.

2. THE DIFFERENTIAL AND TOTAL CROSS-SECTIONS.
THE RADIATION PATTERN OF THE SCATTERED RADIATION.
COMPARISON WITH PHENOMENOLOGICAL THEORY

The quantity k = (2f /X) is the wave number of the incident and scattered radia-

tion which is assumed to be near the wave number K of Lyman-alpha radiation.

7. Stroud, C. R., Jr. (1970) Quantum and Semiclassical Radiation Theories.
University Microfilms, Ann Arbor.

8. Bethe, H.A., and Salpeter, E.E. (1957) Quantum Mechanics of One- and
Two-Electron Atoms, Academic Press, Inc., NTew York, p. 103.

9. Hoffman, H.S., and Moses, H. E. (1972) The ultraviolet convergence of the
ground state of hydrogen, Lettera al Nuovo Cimento 4:54.

10. Gavrila, M., and Costescu, A. (1970) Retardation in the elastic scattering
of photons by atomic hydrogen, Phys. Rev.A 2:1752.

WA
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From the Bohr formula for the energy levels of hydrogen

a (2)

where a is the first Bohr radius of the hydrogen atom and a is the fine structure

constant. The polarization of the radiation is most conveniently described by the

helicity variable #=± I. If P= I, the radiation is circularly polarized in the direc-

tion opposite to that of propagation, whereas if = -I, the radiation is circularly

polarized in the direction of propagation.

We shall assume that incident radiation of wave number k and helicity f

propagates in the positive direction along the z-axis from minus infinity and

strikes the hydrogen atom in the ground state located at the origin. Let us denote

by ! the unit vector in the direction of propagation of the scattered radiation, and

let us introduce the usual polar coordinates 0 and 0 by

= (sin 0 cos 6, sin 0 sin 6, cos 0). (3)

We shall denote the cross section for the scattering of the photon with the

same circular polarization as the incident radiation in the direction 7? by oi(O).

This and the other cross-sections are independent of 0. Then, 01 (0)d Q (where

d Q= sin 0 dO do) gives the relative intensity of the radiation scattered in the solid

angle dQ2. Explicitly,

9 4 01 4) 2  FM co , (4)

where F(k) is the resonance function given by

F(k) - Y2
(k-K -)2+ 2,

and in which the half-breadth y and the resonance shift 6 have the values

6 -1. 320 cm- I , Y = -1. 046 X 102 cm " . (5a)

In terms of frequency these quantities are

-= -6297 Mui, - - 49.9 Mti. (5b)
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The differential cross section for scattering of radiation whose circular

polarization is opposite to that of the incident radiation is denoted by c 2 (0) and

is given by

a2 (0) 9 F(k) sin4 0 (6)
4K 2  7.

The differential cross section for scattering of nhotons of either polarization but

with the incident circular polarization still given by 9 is denoted by cT(O) anti

is just the sum of a 1(0) amd j2(0):

aT(0) = a1 (0) + a 2(0).

One easily verifies that

aL F(k) I+ cos2 0 (7)T(O)- =8K2

If the incident radiation is unpolarized, one averages over both values of A to

obtain the cross section for the scattering of unpolarized incident polarization

without distinguishing the polarization of the scattered radiation. Since CT(0) is

independent of Pi, aT(0) also gives the differential scattering cross section for

unpolarized Incident radiation. It is of interest to note that the 0-dependence of

aT(0) is identical to that predicted by the classical theory of resonance fluores-

cence. 11 In the quantum theory of scattering, we shall see that this dependence is

due to the fact that in our approximation, only photons with angular momentum

quantum number j=l are scattered.

The total cross section Z is given by

where the integration is taken over the entire sphere. We have

= -§ F(k). (8)
K2

We can confront Eq. (8) with the phenomenological results of Mitchell and

Zemansky. 1 2 It is assumed in 12 that in resonance sca'tering a photon is absorbed

11. Panofsky, W.K.H., and Phillips, M. (1962) Classical Electricity and Mag-
netism, Addison-Wesley, Reading, 2nd Edition, p. 4 0 7 .

12. Mitchell, A. C. G., and Zemansky, M. W. (1934) Resonance Radiation and
Excited Atoms, Cambridge University Press, p. 116.
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by the ground atom and then re-emitted. This process is quite different than the

scattering process assumed in the present paper. Still we shall compare one of

the consequences of these assumptions with that of the present paper (scattering,

not absorption and re-emission) as giver by Eq. (8). By the use of detailed bal-

ance and relations between the Einstein A and B coefficients one can construct a

cross-section f' conside-red as a function of the frequency v. 1. is shown that 1 2

X0d _ 2 92 1

'dv 8 g T (9)

where X is the wavelength of the resonant line, g 2 and g, are the degeneracies

of the upper and lower states, and 'T is the lifetime of the upper stat-. From

Eq. (8)

Z dv F, 5dk = lE Iy. (10)

But K = (21T/X ). From the Heisenberg uncertainty priaciple

T (AE) - -h ;(11)

where AE is the "width" of the excited state. The width of the exciteJ state is

12)1 in terms of wave numbers. But AE =-fie I 2y1. Then Eqs. (10) and (11) yield

the following:

X 
2

Fdv-,. 3(12)

Equation (1210 agrees with the phenomenological result Eq. (9)
We can also give the radiation pattern for the scattered radiation. We shall

give the case where the incident radiation is plane-polarized. Let -l' i 2 , i3 be

an orthonormal triad of unit vectors. We take the incident radiation to have the

form

Ein(x, t) = Ci 1 sin k(i 3 . x-ct)

Uin (xt) = Ci 2 sin k(i 3 . x-ct) (13)

The radiation scattered in the direction described by the unit vector is
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- ------ 111 ---

4(x, t) = 3 1i X 1) X nj C{F(k)] 1 / 2 cosrk(!. x- ct) + 4k)]

(xt) = -- [i I X 1 C[F(k)] 1/ 2 cos[k(!.x - ct) +4(k)J, (14)

where 4I(k) is defined by

sin --k) = -[F(k)l1/ 2  =-y [k- _62 + 2]-1/2

cos 4)(k) = (k-K-6) [(k-K-6) 2+ 2]-1/2. (14a)

At resonance, 4 = -1/2. It is to be noted that I(i I X L) X fI i I X nI = sinG

where G is the angle between i I and !L. Hence, the maximum radiation is in the

i 2 ' i 3 plane, and there is no radiation in or opposite to the i direction.

3. EIGENFUNCTIONS OF THE UNPERTURBED HAMILTONIAN.
EXACT MATRIX ELEMENTS

For the sake of brevity the remainder of the paper will be written as a direct

axtension of earlier work, 5 except that in the present paper the helicity will be

denoted by P instead of X as in 5 to prevent confusion with the wavelength X.

Equation3 from the previous paper 5 will have a prime attached to them.

The Hamiltonian of the atom interacting with the radiation field is the usual

one:

H = HA + Hp + HI = H0 + Hi , (15)

where HA is the usual Hamiltonian for the hydrogen atom, Hp is the Hamiltonian

for the photon field given by the first of Eq. (37'), and HI is the interaction of

Eq. (1). As is .customary, we ignore the A 2 termn. Of course, H0 = HA + Hp is

the unperturbed Hamiltonian.

The space of wave functions is sl ned by the eigenfunctions of H0 . Thes-

eigenfunctions are direct products of atomic eigenfunctions and either vacuum

states of the field or of n-photon states which we take to be in the energy- angular

momentum representation as discussed in Eqs. (41') - (43'). Particular eigen-

functions will concern us:
(1) The state in which the atom is in the 1S state and the photon field is in the

vacuum state will be designated by I I >. The state in which the atom is in the 1S

state and there is a photon in the state whose energy is Ep = tick, whose angular

momentum is given by the quantum numbers j, m and whose helicity is given by

will be denoted by 1E ,j,m >.

11



(2) The analogous kets in which the atom is in the 2S state will be denoted

by 12> and 12,.Ep j,m,P> respectively.

(3) In the case that the atom is in a 2 P state with the magnetic quantum

number M (= C, ± 1) and the photon field is in a vacuum state, the eigenket will be

denoted by 12, M>. When a photon is present the ket will be written
1 2. M . E p~j m ,O B>.

T..s in our notation, the absence or presence of the auantum number M indi-

cates whether the atomic state is an S state or P state.

These three sets of kets are orthogonal to all other eigenkets of H0 . They

are also orthogonal to each other. Within each set they satisfy the orthonormality

relations

<III> = 1,

< ,E ,j,m, IE 'p , j,m', P'> = Ep 6(E p-E p')6jj, 6 mm , 6

<1l,E pj = 0,

<212> = 1,

* 2, E Pjm~p2,E ' ', ',P> Ep 6(E p-E p')6., 6 mm 6<,pjm 2,p p], /' p p jj'ra'//

<212,E p,j,m,lP> = 0,

<2,M12,M'> = 6MM,

<2,M,E pj,m,pl2,M',E p,j',m', '>= 6 MM, Ep6lEp E ')6jj, 6mm, 6 PPI

<2,MI2, M',E p,j,m,> = 0. (16)

We shall take all matrix elements of H I to be zero except those between the

eigenfunctions introduced above. The only non-vanishing matrix elements are

easily calculated from Eqs. (2a') and (2b') when one uses the appropriate radial

wave functions for the hydrogen atom. The non-vanishing matrix elements are the

following:

<n,E pj, m,IhI2.M> = <2,MIH1in,E pj.,m,P>*

= -iP(e2/a) (et/I)l/ 2 6M m 6 G n(ka), (17a)

12



where n is the principal quantum number 1 or 2 and the functions G n(x) are

given by

G I(x) = - (2 /3) 1/2 +~2 + (3/2)2]-2

G 2 (x) = - (12)-1112 x3[x2 + ]-3 (17b)

Furthermore,

<nH 1 12, M, E pj,m,p3 > = <2,ME p j~rn.,PIH1 ln>*

= (1 )mie2a (0/)1 ,- 6 j.IG n(ka). (17c0

Finally,

<2,= <~2,M,E , j,m,pH 12,M, jm0H IjM>*

- ( -)M I(e 2 /a) (cev) 1/2 1 1 1

X .IA(ka) ,(17d)

where the function AWx is given by

A (x) = (2) -1 / 2 x 2 [x2 + j]-3 (17e)

As noted previously k = E f ile.

4. EIGENFUNCTIONS OF THE PERtTURBED HAMILTONIAN

IN THE TWO LEVEL APPROXIMATION

We shall denote the energy of the ground state of the hydrogen atom by E I
and the energy of the first excited state by D-2 . Clearly Ic = (E 2 - E1 )I tic. We
shall be interested in particular eigenfunctions of the Hamiltonian H = H 0 + IT,.
They will be denot4d by 11 , E. p j, m A ~ and satisfy the set of integral equations

symbolically given by

I , E j~m~p) 1,lE~ p j,m,p5> y + (E I+E P-H 0 )HlE P m.) (18)

13



where y.(x) [which is not to be confused with the half-width y or the function y(x)

whicJh W.ill be used later as a "haif-wiath function")] ib given by

Y 'x) = -2 - 11T6 (x) = lim 1(19)

where P means that-the principal value of the intpgral is to be used when P/x is

used as a factor in an integrand. The eigenfunction 11 ,i , j , m,) is an outgoing
13wave function in the sense of scattering theory. In our discuqsion of scattering,

we shall, however, follow more closely Friedrichs 4 and Mos. 1 4

It is readily seen that i 1 , E p, j , m , Pi) satisfies required eigenvalue equation

(E -HO) 1 i- p ,j,m,P) = H I,1Ep jmp (20)

where

E = E + E , (20a)

We require these eigenfunctions to satisfy Eq. (18) because they are particu-

larly useful in solving the initial value problem in which we are interested. From
Eq. (18) it folluws that

lim exp -~(H 0 E)t I1,E ,j'mP) = 1 ,E PjAmI>, P(21)
t-_0 h 0p p

lim exp (H0 -E)t Ir j~,P Il,E ,j~m.P>
t4*+O K 0

- 21Tib(E - H 0)H 1 , 1E p ,jmP). (2 2)

It should be note~d that the right-hand side of Eq. (22) is an eigenstate of H0
with the eigenvalue E . It can be shown that the eigenfunctions (1 , E13p j aI m Pj)
satisfy the orthonormality relations

(l.~ ,~mI 1e'., i, ' E6(E - E )6.. 68 0 (23)
(1,E P~mP~,E ',ml P1 Ep p p ii m P

Let us require that the solution I -, (t) > of the perturbed time-dependent
Schroedinger equation approach, as t4-, the solution of the unperturbed time-

13. Lippmann, B.A., and Schwinger. J. (1950) Variational principles for
scattering, 1, Phys. Rev. 79:469.

14. Moses. H. H. (1955) The scattering operator and the adiabatic theorem,
Nuovo Cimento 1:103.
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dependent equation which c:-responds to the state in which t.e atom is in the

ground state and in which a photon is in an energy, angular momentum state. The

state of the system is the direct product of the ground state of the atom, which we

take to be normalized to unity and the wave fuanction of the photon g(E , j, m ,13)
whose normn is

00 1~,/ g(• ,m #)2 d /

Ta-en for t-*-oo

14(t)> = exp -T, Ho t ] c o( o IO .Ep,.1,m , 9>g(Ep j M fl)- -

oO
j~m. 11,lE p~j~m,#l> exp[- (E,+ Ep) t

dE
X g( p 'j'm,,) E (24)

p

For t finite the state is given by

14I)(t)> exp i Z lEp ,jm,#3)g(Ep m
j, m,3 0P

c1,E pj,m,#) exp - (E +FEplt

d EX gl07"p Ij, m,P) E . (25)

P. p

For t- +oo

I(t)> exp - Ift d O 1,E3 j,m,13>g(E j dE
rL 0 j~~," p p p,h-. , 0 Up

00- 21ri - (E-H 0 ) I l,E ,j,m, 0)
j,m,3 ~

X g(E p,j,m,3) Ep' (26)

15



where E=' Ei as before. By evaluating <l.Ep j,m,P 14(t)> using Eq.(28),
P

it is seen that the s.attex ed part of the photon wave function in the energy, angular

momentum representation is

g (E j,m ;t = - 2ffi ' <1,Ep j,m.PIHi1, Epj,' m',p')

x(Ep) g (Ep, j' m', P') exp E l (27

In terms of the linear momentum representation, the scattered part of the photon

wave function is given by

f cP~ . 1 / 2  11 (0y, ( ) )gscp, j, m,P; t). (28)

fsc (,;t) = .2 j m J n

(See Eq. (31a'). ] The angles 0 arnd 0 a the usual angles which give the direc-

tion of p in spherical coordinates.

At finite times t let the wave function h(p,P; t) be defined by

S t 2 YT (0, ) <IE ,j,m, 0 1(t)>,
P j m p

(Ep = cp). (29)

Let 1 = (p/p) and define v(/,P;t) and w(t7,.;t) by

v(7,9;t) = d- 0 hIh(p, P;t)12 p2 dp
d, . cp

w(7,3;t) = d Ih(E, p;t)12 p2 dp. (30)
0

Then v(i, P;tVd 2 where d.Q = sin0 d0do, represents the number of photons

with polarization described by P passing, per unit time, through the solid angle

d Q. Likewise w(7, 0;t) d 9 givec the energy of radiation per unit time passing

through the solid angle dn when the radiation is polarized in the manner given by

ft. The atom is in the ground state. When the wave function of the incident photon

g(E p, j , m , 0) is chosen to correspond in the limit to the case in which the photon

ic monochromatic and when its incident path is a prescribed straight line,

v(, P; t) and w(I, P; t) are independent of time. One can then use these quantities

to obtain the cross-sections. Our treatment will correspond to the discussion of
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time-pi cportional transition probabilities, 15 " 16 which in turn are more careful

trertmets of the thleorv discussed by Lippmann and Schwinger. 13

!" is seen thai 1c solve the scatterinf problem, ane must solve Eq. (18) for

the eigenstates I E, j, m, P). Usually these eigenstates are obtained by pertur-

bation theory o',, equivalently, by iteration. On the right-hand side of Eq. (18),

one replace., Ii , Ep, jmp) by I 1,Ep, j m,l> and continues this iterative proc-

ess in an cbvious way. The second order iteration yields rasults which are of the

Kramers-Heisenberg dispersion formula type, and gives infinite results when the

incoming photon has its energy equal to the difference in energies of two atomic

states. For this reason Dirac3 proposed a different type of approximation which

is more accurate near resonance. What follows is our version of the Dirac res-

onance theory. Our version is a generalization in which degeneracy of the atomic

state is taken into account. Normally one would need to use analogues of "stabil-

ized eigenfunciions" of H0 . But because we are working in an angular momentum
representation and because both H0 and the two level H commute with the anu-

lar momentum (as does the exact H, of ourse) there is a cons-aerable qirp1ifi,-,a-

tion. Indeed, the use of the correct angular momentum representations for

photons makes this comparatively simple calculation possible.
In our approximation we assume that the only non-zero matrix elements of

H I are those given in Eq. (17). These are all the one-photon state which connect

the ground state and the first excited states with each other. The effect of this
assumption is that we have replaced the interaction H, by another interaction

which is also Hermitian. This interaction enables us to solve Eq. (18) exactly.

From Eq.(18)

<l,E pj,m, ',l,Ep ,j,m,f) = Ep 6(E p-E p') 6jj, 6 ram

p p + y. (Ep-Ep')M ] <l,Ep,', " ' [i2M<,MlE~~a1 (31)

15. Friedrichs, K.O. (1952) Zur asumptotischen Beschreibun von Streuprozessen,
Nachrichten derAkademie der Wissenshaften in Goettingen, Mathematische-
Ph~skalische Klasse, la Mathematish-Physikaiish-Chemische Abteiluni
7:43.

16. Moses, H. E. (1953) The Scattering Operator in Quantum Mechanics, Part I:
The Scattering Op erator Formalism and Other Formalisms, Research
Report No. CX- 13, New York Univ., Inst. for Mathematical Sciences.
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On using Eq. (17a)

- l E '*. j', m','I ,E j, m,) k6 (k-k1) 6.. 6 ,r116

- i((a3/n112 a- 'y v(k-k') 6~ 1G (ka) <2,ni' I 1,E , j m,) (32)I I p

In Eq. (32) and later k =E In/ch and k' = ET%'f/ic.
From Eq. (-'O') we have, on multiplying through by < 2, MI

[E p(E 2 -E1 I <2,MjlEp~j,,n.,) <'m'P 2,MIII,0' ' ' '

dE M'P

dE
p

Co

+ < 2, M I 1112, Ep1 ,M

dE'

p p
p

dE

p

On using the expression, Eq. (17) for the matrix elements

(k-K) <2, MI ,E ,j'mfl) =i(ae3/1,)1/2 a- I G' ~ (k'a)
p f' .0 I

p p

3 i(351/2 12:P1Co G 2 k')< ,'1M~I dk'

00

where we have used KcE-

18



From Eq. (18) one obtains in a similar fashion the following:

<2, p ',j',m, P'II E ,j.m,) :

- i6. l I'(x 3/Ii) 1 /2 a-l (k-k'-K)G 2 (k'a)<2,m'I I,E,j,m13), (35)

< 2, M , Ep j', m', p j, m

6i3 (3/,T)1/2 a-I y (k- k'- K) i'(_ 1)n m '  G (k'a)

6, I m - m-M 1

+ i(-1 m 6 M, MG 2 (k'a)<211,Ep ,j,m, P)

-m---M (I) M
i
+ m ' A(k'a)<2,m'4 M'1 1, Epp j,m,P) (36)m t  -(m,+ M )  M P

<111,E pjm,A) = -i(a 3 /1)1/ 2 a - 1(k)

1) mM,' G lI (k a ) < 2 ' ,  m . Ep , 1 , E p ,s p3 ,- r ( 7
Ep~

<2 1,E 'jm) -- i(C 3/ T 1/2 a-Iy1 k-K

x P, ( '11) M  0 G 2(ka) <2, -m', P'l 1 ,E ,j #m,0 )

Xdk'k'--' . (38)

Equations (32), (34), (35), (36), (37), and (38) are a set of equations for the

• I I I . ,quaties'jm, <,Epim.'IE ,j,m,fi); <21 ,4,lEp.i~m, );

<i11,E ,j,m,p); and <211,E p,j,m,). It is to be noted that these are the

only components of I 1, Ep, j. m, P) in the H0 -representation which have the pos-

sibility of being non-zero.

We shall now solve the set of eqiations. On substituting Eq. (36) into Eqs.

(37) and (38), one obtains a pair of homogeneous linear equations for

19



_N-,.. ." , .. . ' L.

<lI1,E p, j,m,p) and <211,E p, j,m,fl). Since the determinant of the coeffi-

cients is not zero it follows that

<ll,E p j,m,p]) = <211,E p jm'P) = 0. (39)

Equation (36) now simplifies considerably. On substituting Eqs. (36), (32),

and (35) into Eq. (04), one obtains an equation for < 2, M I 1, E ,j,m, p) which

one can solve easily. On substituting <2, MI 1 , E, j, m, P) so obtained into

Eqs. (32), (35), and (36) one finds <1 , E p,j, m,'1 lEpjm. P),

2, E p',j',n.'I 1,E p j, m, f), and < 2, M', E p', j',m'' I , E j,rm,P) respec-

tively. In carrying out the substitutions, one should note that summations over

yield factors of 2. Furthermore, one uses

1 1 2
, M =m 1 (40)

m m -M M-m

for M = 0,±1.

In order to give the solution, it is c nvenient to make some definitions. Let

the functions Ii(5) be defined for i = 2, 3 by

I.(x) = [G ( )12 .(x-4) for i= 1,2. (41)
I 0  Li

3(x) = [A )] 2 y (x-) d4 (42)
3 0

The functions Ii(x) are given in Appendix 1. Indeed the imaginary parcs can

be obtained immediately using the 6 -function in Eq. (19).

Let us fuither define

32a 3

8 W 1(k)=- Re I (ka), 82 k W Re I 2(ka-Kn),

63W = 2a Re I 3 (ka-ga). (431

Let H(k) 1 for k-:0 and H(k)= 0 for k<0. Then also

Y1(k) = 2a Im Ii(ka) = - [l(ka 2 H(k),I fa Ika 2  1

y2 (k) = 0 Im I 2(ka-Ka) = 2 [G2 (ka-Ka) 2 H(k-IK),

20



' (k)= r-a Im I3 ka-Ka) 3(k-.1a 2 [A(ka-Kad 2 H(k-K) (441

Also
3 36 (1k) = i Wik, 7(k)= y'.i(k). (45)

i= I i=lI

[Nk of Eq. (45) should not be confused with usual 6-function.]

Then

< , ',j', m', fl' l, j,m,Pl) = k6(k-k')6 j,j, 6m, m6, P,

+ 8 68 . 6m, m , y.(k-k') go,
271 j, I mkm- K--8(k) -iy(k)

<2,MI lEp ,j,m,fl) = %, -ij1M,m k-K-6(k)-iy(k) (47

<2,E ',j,m',fl'IIE ,j,m =lEP 2" 8, .. , 6 ]'.(-'gp p ~ ~ '~.i j,j m,m' '' (-'K
X [kk"y1 (k) y(k'+ K)] (/2

k-K-6(k) k -6(k) - iy(k)4

<2,M',E p,j',m',P'Il,E ,j,m.p) =

i (~ ,1 11121

2" ~27 6j~j, 6reM, m-k'~kk

[3kkyl(k) Y 3 (k+)] I/ 2 J(8

X k-K-6(k) - iy(k) (49)

A quantity which is important for finding the scattered portion of the wave

function [see Eq. (27)] is given by

-21Ti(E )1 <I,E pj, m,PIHI1,E pj,m 1)

"27i(fick)-I ZM <I,Ep j~m,PIHI2,M><2,MI,Ep mt. I)
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j, j,j' 6 m,mrnfll( k-K-6(k)-i(k) (50)

It is to be noted that angular momentum is conserved as indicated by the pres-

ence of factors as 6 .. 6 mM. Eq. (39) is another consequence of the conserva-

tion of angular momentum.

5. THE LINE BREADTH AND THE SHIFT IN POSITION OF RESONANCE

It is obvious that the square of the absolute value of k-K-6(k) - iy(k) , that

is [k-K-6(k)] 2 + [y(k)121-I is t: , resonance denominator in the scattering cal-
culations. Since we are considering values of k near K, and since 6(k) and y(k)

are slowly varying functions of k, we may replace k by K in these functions as

is customary. We define 6 and y by

6 = 6(K), y=y(K) M yI (K). (51)

The re-onance denominator then becomes [(k-X-6) 2 + Y21"1. The values 6

and y given by Eq. (5a) are those obtained from Eq. (51). It is seen that while the

matrix elements corresponding to the "forbidden" transitions contribute nothing

to y, they give a substantial contribution to 6. The value of 6 in 6,7, which ig-

nores the effect of the forbidden transitions is the principal contribution of 61

which is seen to be 61(0). The value of y of 6 is in error and should have the

value given in Eq. (5a).

6. CALCULATION OF TIHE CROSS-SECTIONS

We sht ,0 now derive Eqs. (4) and (6) for a1 (O) and a2(0) respectively. Our
procedure will be to obtain the transitions per unit time w(1. P;t) of Eq. (30),

taking as the initial photon state g(E p, j, m , P) that one which gives rise to a cir-

cularly polarized electromagnetic wave of a given wavelength, travelling along the

positive z-axis. One then divides w(7, P;0 by the flux of energy of the incoming

radiation, that is, the Poynting vector.

We shall now proceed. It is convenient to specify the initial photon state in

the linear momentum representation instead of the angular momentum represen-

tation. Let the initial state in the linear momentum representation be denoted by

f(p, A). Then from Eq. (31b')

EP(2o-,n T m,* (0, )f2 si)ng(E p j#11#P) 2--- 2 do dO sin 0 Y
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p= (Ep/c) (sin 8 cos 0, sin 9 sin e, cos 0). (52)

On using Eqs. (29), (46), and (52) we obtain the wave function of the photon at

finite times in the linear momentum representation as.ct1 7 m'p(,0
h(pck;t) = e i tf(p P) + - m ' ' y d

× m ' 3 * (0', e') PP'G(k', k) e- ick't7 (k -k) f(pV, P') ,(53)

where 0', ¢' are the polar angles of J', G(k', k) is given by

1 [k' Y(k)y 
(k') 

2

G k , k) (53a)I
k' k -K-6(k')-i(k) (53a)

and where here and later

Ep = cp = chk, E ' cp' = cik', Ep = ctik". (53b)

In deriving Eq. (53), we have used the completeness relation for Y 'm (0 , 0)

Eq. (A 12).
17

For the wave function f(p, P) let us take

f(£, ) = 6 ,f(Q) (54)

where f(p) is a real function of p which has a very sharp peak at p where

p0= YK(O, 0, 1). (54a)

The incoming electromagnetic field corresponding to this wave function can be

obtained from Eq. (34'). Because. of the sharpnbss of the peak in the wave function

t) iA K(z-ct) ^ e iK(zct

17. Moses, H. E., and Quesada, A. F. (1973) The expansion of physical quan-
tities in terms of the irreducible representations of the snale-Euclidean
group and application to the construction of scale-invariant correlation
functions. II. Three- .mc s ional problems. Generalization of the
Helmholtz vector decompositi3n theorem, Arch. Rati. Mech. 50:194.
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H~xt) - A ~ iK(z-ct) + iK(z-ct)

A Sf(p) dp.

In terms of the Cartesian components

E (x 't) = H (x' t) = A sin(K(z-c-t)]

E (x,t) =H (x~t = AP cos [K(z-ct)]
y t) 1/2 I3/2

E7(x,t) = HZ(xDt) = 0. (56)

Only the z-component of the Poynting vector is not zer... The z-component,
denoted by S, is given by

S= E HI - E H -9- cA 2  (57*)x y y x41r7 2-T)

We shall calculate w07 P I; t) for 17 which does not coincide with the z-axis.

For this reason, and because f(p) is so sharply peaked at p = po, tlhe first term

on the right of Eq. (53) is zero. Thus one has

2 P/2 42.

dt Ihp~t 'l2 i.

X(k- ke) eic(kk-I) ty (k-k)y*(N-k) f(p') f(p7) ,(58)

where p', 0', 0', and Pff, 0", 0' are the spherical coordinates of P' and pj' re~-

spectively. In Eq. (5 we make the substitution

(k'..e) y (k'-k)*(ke -k) = [(k'-k) -(k"-k)] y (k'-k)yk-)

y * (k" -k) - y (k'-k) (59)

and obtain two terms on the right of Eq. (58) On interchanging the primed and

double-primed dummy variables in one of the terms
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I -h(p, P;t 0 ~ limrZn Y 00dt p 2 m p'

X Ym, (0, ) ym, *(O',¢(') GW',k) Yrd' (", 0") G*(k k)

X e-ic(k')ty_(k'-%)f( ') f() . (60)

We now use the fact that f(p) is sharply peaked at p=po to make the following
approximations under the integrand which become increasingly good with increas-

ing sharpness of the peak.

e-ic(k'-k')te-ic(K-K)t ,

yme , (0 , 6') - m ' *(0,O') = (3/41),/2 6

y mP(O",(,)- ynfP (0 ,0") = (3/45)1/26m.,

1/"

p'- hK, p1 K

G(k', k) - G(K, k), G(k', k) - G(K, k), y(k'-k) - y(K-k). (61)

Then, on using Im y_(x) = -176(%)

ih(p. ;tI- 3cA2  IG(K, k) t I''(0 6(K-k) (62)-F =2p2(hK)4

Finally, from Eq.(30) and the fact that 6(K-k) 6(p- K)

w(77' P; 0 G d h(p, ;t) 12 p2dp
0

3cA 2  [y1(K)12

- K2 8V2 10 (K-K-6(K)]2+j(K)]2  1

where 0, 6 are, of course, the polar angles of 7.

Now from Appendix D of Ref. 17

YP.9(0,0) = (3/16)112 (1 + cos 0).
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yo'-0(0, ) = (3116w)l /2e O(I_cos 0),

= + 1. (64)

Now the cross section for the case that the circular polarization of the scat-

tered photon is the same as that of the incident photon is given by

ai(0) = w(no;t)/S = 4 2  [yI(K)] 2  Cos 4 (0/2) (65)
[K-K-8(K)]

2 + [y(K)] 2

Similarly, the cross section for the case that the circular polarization of the

scattered photon is opposite to that of the incident photon is

9 [y1 (K) 12  sin4 (/2)
a2(O) = w(-,-O;t)/S = 4 2 K.K.6(K)]2+ y(K)] 2  . (66)

The expressions Eqs. (4) and (6) are obtained from Eqs. (65) and (66) re-

spectively by replacing K in the functions K 2 . 8(K). y(K), and vt(K) by K.* and by

using Eq.(51).

7. CALCULATION OF THE SCATTERED ELECTROMAGNETIC FIELD

We shall now derive Eq. (14) for the scattered electromagnetic field.

As before the wave function of the Incident photon in the linear momentum,

helicity representation will be denoted by the complex function f(p. 0). On using

Eqs. (27). (28). (50). and (52). the wave function of the scattered photon in the
linear momentum representation is

Oy I (k) -ickt
fsc(P''t) = I k-KB-6(k)-iy(ke

x 1 ' eYTB(9.~) 02" do' sin 0' Ym'.*( 0 II"

m I

X fV E O,)dMe  (67)

where 0, and 0', ' are the polar angles of p and i' respectively and

I'1 = p = Ilk.
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The incident wave function will be taken as

f(p, 0) = f(p) (68)

and is independent of P. The function f(p) is real and has a sharp peak at

p-p0, where P0 = tiK(0, 0, 1), as before. It is readily shown that the incident

electromagnetic field is given by Eq. (13) where

C -21/2 f(p) dp. (69)170/2

The proof is close to that for Eqs. (55) and (56).

The electromagnetic field of the scattered radiation is obtained by substituting

f sc(pP; t) for g(pX) e" -(i/li)cpt] in Eq.(24'). The scattered electromagnetic

field can be written

E(x, t) = EN , t; !)

H(x,t) = SH(x,t;V)d 2, (70)

where in Eq. (24') we have written dp = p 2dpdgl, with dfl= sin 0 dO do being the

element of solid angle and It= pp as before. The vectors E(x,t; ) and H(x,t;9.)

are the components of the electrofield propagating in the direction j. The quanti-

ties E(x, t; a) dQ and H(x, t; V)dQ2 are portions of the electromagnetic field which

would be intercepted by an antenna of aperture dM. In fact, E(x,t; !) and H(x,t;I)

are Esc(X, t and H (x,t) of Eq. (14). The evaluation of E(x,t;f3) and H(x.t;fl) in-

volves an integration over the variable p. Because of the sharpness of f(p) at p

near p0, the following approximations are made:

eik(q, x - ct) _eiK(. - ct)

Yl y1 (K) Y
k-K-6(k) - iy(k) K-K--(K)- iy(K) - K-K-6-iy

= - [F(K)l K) . (71)

In Eq.(71) we have used the fact that K is near K. Eq.(14a) and (51) have

also been used.

The sharpness of f(p) also permits the approximation given by the second of

Eq. (61) where A is replaced by PO. Finally, one has
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E(xt; ) = -13i8f)1/2 C(F(K)]1/
2 Re 0 i[K( " - ct + 4(K)]

× X, _ 'Q(!.)YP'P(O, ). (72)
P=*:l p'--1 1

But by explicit calculation

Z () l() = - (3/2V) 1/2 [(I 1 XL) X I]. (73)p=*l p'=:*1

The first of Eq. (14) then follows. The second of Eq. (14) is obtained in a

similar fashion.

8. COMPLETENESS OF THE EIGENSTATES.
HIGHER ORDER PERTURBATION THEORY

By eliminating all but the two-level matrix elements of the interaction, we have

constructed an approximate Hamiltonian If. One can ask the question whether the

eigenfunctions of Section 4 are a complete set of eigenstates. We believe that this

question can be answered, and missing eigenstates can be found using techniques of

Reference 4. When we have such a complete set, we may get a better approximation

by considering the exact Hamiltonian H to be a sum of the approximate Hamiltonian H',

whose eigenstates are known, and a perturbation consisting of the interaction which

has been ignored so far. One can se: up integral equations for the "outgoing" eigen-

functions of H in terms of the "outgoing" eigenfunctions of H1. 18 This integral

equation can be solved, formally at least, in terms of a Born expansion about the
"outgoing" eigenfunctions of H'. We believe that the expressions for these Born

approximation terms will converge if the exact matrix elements of the electro-

mvagnetic interaction are used to prevent ultraviolet catastrophes. One of the

principal causes of divergence in the usual Born expansion of the problem is that

it is not recognized that H0 has point eignevalues embedded in the continuum

which the interaction may cause to disappear. Even when one uses H', the Born

expansion about H0 would yield divergences. This matter is discussed in great

detail for a simpler model. 4 Thus a more careful study of the nature of the

changes of the spectrum is needed to prevent some of the divergences.

18. Gell- man, M., and Goldberger, M. L. (1953) The formal theory of scattering,
Phys. Rev. 91:398.
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Appendix A

Evaluation of the Integrals li(x)

We shall first give the integrals Ii(x) and then sketch the derivation of 12 (x)

which is the most complicated of them, the derivation of II(x) and 13 (x) being a

simpler version of that for 1 ().

We need give only the real parts of li(x), since the imaginary parts are given

in Eq. (44).

8_ 41 T (2q-2) !

Re II(x) = - 1- y kqz
q=l q [(q-l)!12

4× 1 1 q1 _

X 5q 2 q-1 1+25 -q
(l+y ) q=2 (1+y)

+ 124 log lyi] where y=(2x/3) (A-l)l+y2)

2 -2 q=l I ,22(q-l)q1) ]( q -  )Re I2(x) - l1)~i - x[~ q'i. 1-2 1

5
1 5- (2q-2)1 1

(1+x 2)5 - q  q=1 22 (q-1) [(q-1)j 2  (+x 2 )6 - q

6+ 'TX F (2 9-2): !

q=1 2 (q'l)[(q-1)] (1+x2)7 -q
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4 5
I1 4 1 1 1 1

2 q_2 q-1 (1+x2)5-q q=2 q-1 (1+x
2)6-q

6 4 I
+q-1 I + -2 log I(-q--2 q1(+x 2)

7T-q +(+x 2 ) 
6

512 Y I (2q-2) 2

Req3 (x - 2 2 q[(q-)]

1 x (2q-2)!
(l+x2) 6 -q  "2 q=1 22(q-1)[(q-l)!]

5

X +I E I
X 1+2 ) 7-q 2 q=2 q-1 ( 1+x 2 )6 -q

6 ____ 2 I1.(A31 E 1 1 + X log I (A-3)

q2 -(+x2)7-q (+x 2)6

It should be noted that only the first terms on the right of Eqs. (A-2) and (A-3)

contribute to 6, since x =0 in the computation.

To derive the expressions for Ii(x) the following integrals are used:

00 d - _ (2q-2)! 
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p
1 - ~ log(-z), (A-5)

S q=2 q-1 (1+z 2 )p-q+1  (1+z 2 )p

where z is a complex number.

Now, from Eq. (41)

11 t (A-6)12(x 1 2 (i+2 6(.)

0 (1+4 (-Z)

where z = x + iE. After evaluating the integral we take 6 -0.
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